Magnetic Resonance - Technology Information Portal Welcome to MRI Technology
Info
  Sheets

Out-
      side
 



 
 'Transverse Relaxation Time' 
SEARCH FOR    
 
  2 3 5 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Result : Searchterm 'Transverse Relaxation Time' found in 1 term [] and 3 definitions [], (+ 12 Boolean[] results
previous     6 - 10 (of 16)     next
Result Pages : [1]  [2 3 4]
Searchterm 'Transverse Relaxation Time' was also found in the following service: 
spacer
News  (1)  
 
Balanced Fast Field EchoInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - Sequences -
 
(bFFE) A FFE sequence using a balanced gradient waveform. A balanced sequence starts out with a RF pulse of 90° or less and the spins in the steady state. Before the next TR in the slice phase and frequency encoding, gradients are balanced so their net value is zero. Now the spins are prepared to accept the next RF pulse, and their corresponding signal can become part of the new transverse magnetization. Since the balanced gradients maintain the transverse and longitudinal magnetization, the result is, that both T1 and T2 contrast are represented in the image. This pulse sequence produces images with increased signal from fluid, along with retaining T1 weighted tissue contrast. Because this form of sequence is extremely dependent on field homogeneity, it is essential to run a shimming prior the acquisition. A fully balanced (refocused) sequence would yield higher signal, especially for tissues with long T2 relaxation times.

See Steady State Free Precession and Gradient Echo Sequence.
 
Images, Movies, Sliders:
 Cardiac Infarct Short Axis Cine bFFE 1  Open this link in a new window
    
 
spacer
 
Further Reading:
  News & More:
T1rho-prepared balanced gradient echo for rapid 3D T1rho MRI
Monday, 1 September 2008   by www.ncbi.nlm.nih.gov    
Utility of the FIESTA Pulse Sequence in Body Oncologic Imaging: Review
June 2009   by www.ajronline.org    
MRI Resources 
Software - Stent - Diffusion Weighted Imaging - Jobs pool - Pregnancy - Process Analysis
 
Free Induction Decay
 
(FID) A free induction decay curve is generated as excited nuclei relax. The amplitude of the FID signal becomes smaller over time as net magnetization returns to equilibrium. If transverse magnetization of the spins is produced, e.g. by a 90° pulse, a transient MR signal will result that will decay toward zero with a characteristic time constant T2 (or T2*); this decaying signal is the free induction decay.
The signal peaks of the echoes fall onto this T2 decay curve, while at each echo the signals arise and decay with T2*. The typical T2 relaxation times being of the order of 5-200 ms in the human body. The first part of the FID is not observable (named the 'receiver dead time') caused by residual effects of the powerful exciting radio frequency pulse on the electronics of the receiver.
spacer

• View the DATABASE results for 'Free Induction Decay' (8).Open this link in a new window

 
Further Reading:
  Basics:
Free induction decay
   by en.wikipedia.org    
  News & More:
Magnetic resonance imaging
   by www.scholarpedia.org    
MRI Resources 
Health - Implant and Prosthesis pool - Online Books - RIS - MRI Technician and Technologist Jobs - Supplies
 
Fast Relaxation Fast Spin EchoInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.
 
(FRFSE, FR-FSE) The fast relaxation fast spin echo sequence provides high signal intensity of fluids even with short repetition times, and can be used with parallel imaging techniques for short breath hold imaging or respiratory gating for free-breathing, high isotropic resolution MR imaging. After signal decay at the end of the echo train, a negative 90° pulse align spins with long T2 from the transverse plane to the longitudinal plane, leading to a much faster recovery of tissues with long T2 time to the equilibrium and thus better contrast between tissues with long and short T2.
Fast relaxation FSE has advantages also for volumetric imaging as the TR can be substantially reduced and thus the scan time. The sequence can be post processed with maximum intensity projection, surface or volume rendering algorithms to visualize anatomical details in brain or spine MRI. Cerebro spinal fluid pulsation artifacts, often problematic in the cervical or thoracic spine may be reduced by radial sampling, in particular when combined with acquisitions of the PROPELLER type.

See also Fast spin echo, Driven Equilibrium.
 
Images, Movies, Sliders:
 Shoulder Sagittal T2 FatSat FRFSE  Open this link in a new window
    

Courtesy of  Robert R. Edelman
 Shoulder Axial T2 FatSat FRFSE  Open this link in a new window
 Shoulder Coronal T2 FatSat FRFSE  Open this link in a new window
    

Courtesy of  Robert R. Edelman
 
spacer
Searchterm 'Transverse Relaxation Time' was also found in the following service: 
spacer
News  (1)  
 
Short T1 Inversion RecoveryInfoSheet: - Sequences - 
Intro, 
Overview, 
Types of, 
etc.MRI Resource Directory:
 - Sequences -
 
(STIR) Also called Short Tau (t) (inversion time) Inversion Recovery. STIR is a fat suppression technique with an inversion time t = T1 ln2 where the signal of fat is zero (T1 is the spin lattice relaxation time of the component that should be suppressed). To distinguish two tissue components with this technique, the T1 values must be different. Fluid Attenuation Inversion Recovery (FLAIR) is a similar technique to suppress water.
Inversion recovery doubles the distance spins will recover, allowing more time for T1 differences. A 180° preparation pulse inverts the net magnetization to the negative longitudinal magnetization prior to the 90° excitation pulse. This specialized application of the inversion recovery sequence set the inversion time (t) of the sequence at 0.69 times the T1 of fat. The T1 of fat at 1.5 Tesla is approximately 250 with a null point of 170 ms while at 0.5 Tesla its 215 with a 148 ms null point. At the moment of excitation, about 120 to 170 ms after the 180° inversion pulse (depending of the magnetic field) the magnetization of the fat signal has just risen to zero from its original, negative, value and no fat signal is available to be flipped into the transverse plane.
When deciding on the optimal T1 time, factors to be considered include not only the main field strength, but also the tissue to be suppressed and the anatomy. In comparison to a conventional spin echo where tissues with a short T1 are bright due to faster recovery, fat signal is reversed or darkened. Because body fluids have both a long T1 and a long T2, it is evident that STIR offers the possibility of extremely sensitive detection of body fluid. This is of course, only true for stationary fluid such as edema, as the MRI signal of flowing fluids is governed by other factors.

See also Fat Suppression and Inversion Recovery Sequence.
 
Images, Movies, Sliders:
 Sagittal Knee MRI Images STIR  Open this link in a new window
      

 
spacer

• View the DATABASE results for 'Short T1 Inversion Recovery' (3).Open this link in a new window

 
Further Reading:
  Basics:
Can Short Tau Inversion Recovery (STIR) Imaging Be Used as a Stand-Alone Sequence To Assess a Perianal Fistulous Tract on MRI? A Retrospective Cohort Study Comparing STIR and T1-Post Contrast Imaging
Wednesday, 17 January 2024   by www.cureus.com    
  News & More:
Generating Virtual Short Tau Inversion Recovery (STIR) Images from T1- and T2-Weighted Images Using a Conditional Generative Adversarial Network in Spine Imaging
Wednesday, 25 August 2021
Short tau inversion recovery (STIR) after intravenous contrast agent administration obscures bone marrow edema-like signal on forefoot MRI
Tuesday, 13 July 2021   by www.springermedizin.de    
MRI Resources 
Case Studies - Artifacts - Education - Health - Service and Support - Claustrophobia
 
T2* Time
 
(T2 Star) The characteristic time constant that describes the decay of transverse magnetization, taking into account the inhomogeneity in static magnetic fields and the spin spin relaxation in the human body. This results in a rapid loss of phase coherence and the MRI signal. The T2* time is always less than the T2 time.
spacer

• View the DATABASE results for 'T2* Time' (2).Open this link in a new window

 
Further Reading:
  News & More:
Iron Measurements with MRI Reveal Stroke's Impact on Brain
Tuesday, 12 March 2019   by www.rsna.or    
Automatic Mapping Extraction from Multiecho T2-Star Weighted Magnetic Resonance Images for Improving Morphological Evaluations in Human Brain
Wednesday, 5 June 2013   by www.hindawi.com    
T2* cardiac MRI allows prediction of severe reperfusion injury after STEMI
Tuesday, 9 November 2010   by www.medwire-news.md    
MRI Resources 
Knee MRI - Most Wanted - Process Analysis - Diffusion Weighted Imaging - Calculation - PACS
 
previous      6 - 10 (of 16)     next
Result Pages : [1]  [2 3 4]
 Random Page
 
Share This Page
FacebookTwitterLinkedIn

MR-TIP    
Community   
User
Pass
Forgot your UserID/Password ?    



MRI is trending to low field magnets :
reduced costs will lead to this change 
AI will close the gap to high field 
only in remote areas 
is only temporary 
never 

Look
      Ups





MR-TIP.com uses cookies! By browsing MR-TIP.com, you agree to our use of cookies.

Magnetic Resonance - Technology Information Portal
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology-TIP • Medical-Ultrasound-Imaging • 
Copyright © 2003 - 2024 SoftWays. All rights reserved. [ 29 April 2024]
Terms of Use | Privacy Policy | Advertising
 [last update: 2024-02-26 03:41:00]